

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Fenton and Photo-Fenton Processes Coupled to UASB to Treat Coffee Pulping Wastewater

Márcia M. Kondo^a; Kamilo U. C. G. Leite^a; Milady R. A. Silva^a; Amanda D. P. Reis^a

^a Universidade Federal de Itajubá, Itajubá, MG - Brazil

Online publication date: 19 July 2010

To cite this Article Kondo, Márcia M. , Leite, Kamilo U. C. G., Silva, Milady R. A. and Reis, Amanda D. P.(2010) 'Fenton and Photo-Fenton Processes Coupled to UASB to Treat Coffee Pulping Wastewater', *Separation Science and Technology*, 45: 11, 1506 – 1511

To link to this Article: DOI: 10.1080/01496395.2010.487451

URL: <http://dx.doi.org/10.1080/01496395.2010.487451>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Fenton and Photo-Fenton Processes Coupled to UASB to Treat Coffee Pulping Wastewater

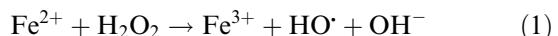
Márcia M. Kondo, Kamilo U. C. G. Leite, Milady R. A. Silva, and Amanda D. P. Reis

Universidade Federal de Itajubá, Itajubá, MG – Brazil

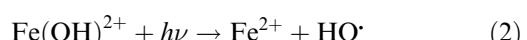
One of the processes for pulping the coffee cherries can be obtained by using water. This process uses a great amount of water and its waste contains high concentration of organic matter and other compounds such as pesticides, which makes this wastewater potentially harmful to any receiving water system. The present work investigated the treatment of the pulping wastewater using two advanced oxidation processes (AOPs). The optimum molar concentration for the treatment was 6.3×10^{-2} mol L⁻¹ for iron (II) and 2.5×10^{-1} mol L⁻¹ of H₂O₂. The solar photo-Fenton system showed better results compared to the conventional Fenton, with a reduction of biological oxygen demand (BOD) up to 60%. The combination of chemical and biological treatment showed that the sequence of UASB followed by solar photo-Fenton treatment showed better BOD removal efficiency of 95%.

Keywords anaerobic UASB reactor; BOD; coffee; photo-Fenton

INTRODUCTION


Coffee is a much appreciated beverage around the world and Brazil is one of the major producers of this product (1). The coffee industry uses large amounts of water during the various stages of coffee production. The first step is the removal of the skin and pulp followed by removal of the pulp using water with a controlled fermentation that removes the remaining pulp to produce a better quality coffee. This process uses a great amount of water and the pulping wastewater contains high concentrations of suspended organic matter including fructose, glucose, proteins, polyphenols (caffeine, tannic acid), and small amounts of natural dyes (2). The chemical oxygen demand (COD) of these effluents is very high, in the order of 34,460 mg L⁻¹ and 8% of the COD corresponding to phenol compounds (3). The coffee pulping wastewater is very harmful to the receiving aquatic system (4,5). Literature shows that very little work has been done concerning such effluents (6). Therefore, there is a need to develop a

treatment process to reduce the organic load present in these effluents.


Upflow anaerobic sludge blanket process (UASB), a classical biological treatment, is being used to treat other food industry effluents such as from distilleries (7), poultry and livestock (8), and dairy products (9). The main problem is that those types of effluents are, in general, a complex mixture of high concentrations of natural organic matters and some other compounds including, in some cases, toxic ones. Therefore, other treatments are necessary and literature shows that a combination of biological treatment and advanced oxidation processes (AOPs) has been investigated as a potential alternative for the treatment of biologically recalcitrant pollutants, enhancing the biodegradability and lowering the treatment costs (10–13).

AOPs, in general, can destroy toxic organic or inorganic compounds and convert them to non-toxic ones (14,15). These processes involve the generation of hydroxyl radicals and due to their high redox potential of 2.730 V (HO[•], H⁺/H₂O) (16), HO[•] can oxidize many classes of organic compounds, if not to CO₂, H₂O, and inorganic ions, at least to less harmful and biodegradable compounds (17–20).

The Fenton reaction (Eq. 1) is an example of AOPs. The reaction is a mixture of solutions of Fe(II) and hydrogen peroxide, that generates hydroxyl radicals in aqueous solutions (21).

The Fenton reaction efficiency can be enhanced in the presence of UV light, when it is known as photo-Fenton reaction (22). Fe(III) can be photoreduced to Fe(II) and this step is considered to enhance the oxidation effect. The regenerated Fe(II) can further react with H₂O₂ (Eq. 1), and generate additional hydroxyl radical (Eq. 2) (21).

Besides its simplicity, the photo-Fenton process has the possibility to use solar light, which can considerably reduce the operating costs (10,17,23).

Received 3 December 2009; accepted 26 February 2010.

Address correspondence to Márcia M. Kondo, Universidade Federal de Itajubá, Av. BPS 1303, Itajubá, MG 37500-903, Brazil. E-mail: marciakondo@gmail.com

The objective of the present work was to investigate the possibility of diminishing the organic matter in terms of biological oxygen demand (BOD) of the coffee pulping water, by comparing two AOPs systems, namely, Fenton and solar photo-Fenton processes. Coffee farmers around our region are reporting problems concerning the safe environmental disposal of these effluents that are produced in large amount once a year. That was the reason why our group started to study POAs as an alternative treatment. In the present work it was also investigated that the coupling treatment of Fenton or solar photo-Fenton processes with an anaerobic biological treatment, using an up flow anaerobic sludge blanket (UASB) reactor in a laboratory prototype scale.

EXPERIMENTAL

Reagents

All solutions were prepared using distilled water. $\text{Fe}_2\text{SO}_4 \cdot 7\text{H}_2\text{O}$ e H_2O_2 30% (w/w) were purchased from Synth. 1.0 mol L⁻¹ solution of H_2SO_4 (Isofar) and NaOH (Impex) were prepared to adjust the pH value for the photodegradation experiments. KH_4PO_4 (Dinâmica); K_2HPO_4 (Nuclear); $\text{Na}_2\text{HPO}_4 \cdot 7\text{H}_2\text{O}$ (Nuclear), NH_4Cl (Isofar), $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$ (Ciro), CaCl_2 (Nuclear), $\text{FeCl}_3 \cdot 6\text{H}_2\text{O}$ (Vetec) were used to prepare the dilution water for BOD analysis according to the Standard Methods for the Examination of Water and Wastewaters (24).

Sample

Pulping water effluent was collected from a coffee farm located in Cachoeira de Minas, Minas Gerais state, Brazil. The photodegradation experiments were carried out in Itajubá city located at 21°47'S; 48°10'W, during spring and summer 2008. Parameters such as pH, total solid, and BOD were determined following the Standard Methods for the Examination of Water and Wastewaters (24). The suspended solids were previously removed and therefore only the supernatant fraction was used for the photodegradation experiments.

Fenton System

Samples (100 mL) were placed in a beaker and iron(II), as $\text{FeSO}_4 \cdot 7\text{H}_2\text{O}$, was added at a predetermined concentration. The pH value was adjusted between 2.5 and 3.0. Hydrogen peroxide was added and the resulted solution was mixed for 2 h. After this period, the pH of the solution was adjusted to 8.0 to stop the Fenton reaction by precipitation of iron hydroxide and then centrifuged. Aliquots were taken to monitor the BOD before and after the AOPs treatment. BOD analyses were also performed according to the Standard Methods for the Examination of Water and Wastewaters (24). Chemical oxygen demand was determined by means of a dichromate reflux method using a

commercial kit, according to Standard Methods for the Examination of Water and Wastewaters (24). The mineralization of the compounds was monitored by TOC (TOC-5000A, Shimadzu). TOC analyses were determined for a few samples because this equipment was not available at our laboratory and samples were sent to be analyzed elsewhere (Univ. Estadual Paulista – UNESP).

Photo-Fenton System

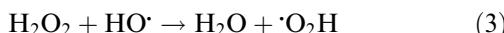
The same procedure as for Fenton reaction was followed using the best ratio of $\text{Fe}^{2+}/\text{H}_2\text{O}_2$, to be able to compare data. However, the sample was placed in a shallow recipient and was maintained under sunlight radiation for 2 hours, always between 11:00 h until 13:00 h, in order to allow a comparison of the results. Irradiation energy accumulated during solar exposure was measured using a radiometer (Cole-Parmer 9811) in the 365 nm with the sensor placed horizontally. The average radiation intensity reaching the solution was 1.51 mW cm⁻².

Biological Treatment

UASB prototype was constructed at laboratory scale according to Kondo and Rosa (25), using recycled materials. In order to quantify the possible enhancement of the biodegradability of the pulping water after Fenton reaction, 10 L of a diluted sample (1:100 v/v), treated and untreated effluent, at pH near 6.0, were passed through the UASB reactor at a flow rate of 0.50 mL s⁻¹, and BOD was analyzed before and after the biological treatment.

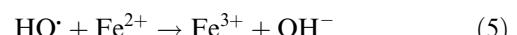
RESULTS AND DISCUSSION

The pulping wastewater sample was analyzed. Table 1 presents the physical chemical parameter values of the wastewater sample. As it can be observed, the wastewater shows a high concentration of total solids, and due to this fact, it was chosen to perform all the experiments, including BOD and COD, using only the supernatant fraction of the effluent, which contains dissolved organic matters. The solid phase was separated by sedimentation. The



TABLE 1
Physical chemical parameters of the coffee pulping wastewater

Parameter	Value
pH	4.14
Total Solids	9.4 mg L ⁻¹
Volatile Solids	6.8 mg L ⁻¹
Fixed Solids	2.5 mg L ⁻¹
COD	9650 mg O ₂ L ⁻¹
BOD	7294 mg O ₂ L ⁻¹

COD and BOD values show that the organic matter concentration was very high indicating that this effluent cannot be discharged without pre-treatment to the environment.


Fenton Treatment

Literature shows that different Fe(II)/H₂O₂ ratios have been used as optimum for the degradation of several organics, indicating that this ratio can vary with the compound to be degraded, due to different characteristics of each compound and effluent (17,26,27). Therefore, several experiments were conducted to obtain the optimum ratio between Fe²⁺ and hydrogen peroxide to treat the coffee pulping wastewater (Fig. 1). It can be observed that a constant H₂O₂ concentration of 4.7 × 10⁻¹ mol L⁻¹ the efficiency of the process increased as Fe²⁺ concentration also increased, reaching a maximum of 30% using 1.5 × 10⁻¹ mol L⁻¹ of Fe²⁺. Decreasing the concentration of H₂O₂ from 4.7 × 10⁻¹ to 2.5 × 10⁻¹ mol L⁻¹ resulted in a significant increase in the treatment efficiency. These results can be explained due to the recombination of the hydroxyl radicals (Eq. 3) or the auto-decomposition of H₂O₂ (Eq. 4) when present in high concentration. Therefore competitive and/or inhibitory reactions could have been taking place at higher H₂O₂ concentration (26–28).

At this H₂O₂ concentration the best result was observed at a Fe²⁺ concentration of 6.3 × 10⁻² mol L⁻¹. Higher Fe²⁺ concentration showed a decrease in the efficiency, probably

due to the fact that Fe²⁺ now is acting as HO[·] scavenger (Eq. 5) (29).

Results shows yet that at an even lower H₂O₂ concentration (1.25 × 10⁻¹ mol L⁻¹) the efficiency of the process could be increased; however, in the present work it was chosen to use the Fe(II):H₂O₂ molar ratio of 6.3 × 10⁻² to 4.7 × 10⁻¹, although any of the other two ratios could also be used. The choice for the intermediate value allows the use of this process in an effluent with higher organic load, because the process would have an additional, but not in excess, amount of H₂O₂.

Solar Photo-Fenton Treatment

The solar photo-Fenton treatment was investigated using the optimum ratio obtained for Fenton reaction, for the sake of comparison. It was observed that there was an enhancement in the BOD removal from 35%, using Fenton treatment, to more than 65% efficiency using the solar photo-Fenton system. This result indicates that with irradiation of the system it was possible to increase the biodegradability of the organic matter in the wastewater. The decolorization of a coffee solution, prepared by dissolving an instant coffee powder, showed an increase of efficiency from 38% using the Fenton process to 95% using solar photo-Fenton system (30). The irradiation can increase the hydrogen peroxide decomposition rate (Eq. 2), which will increase the amount of the hydroxyl radicals in the system, due to the photo reduction of Fe³⁺ to Fe²⁺ and consequently more organic matter can be degraded during the same period of time (22,31).

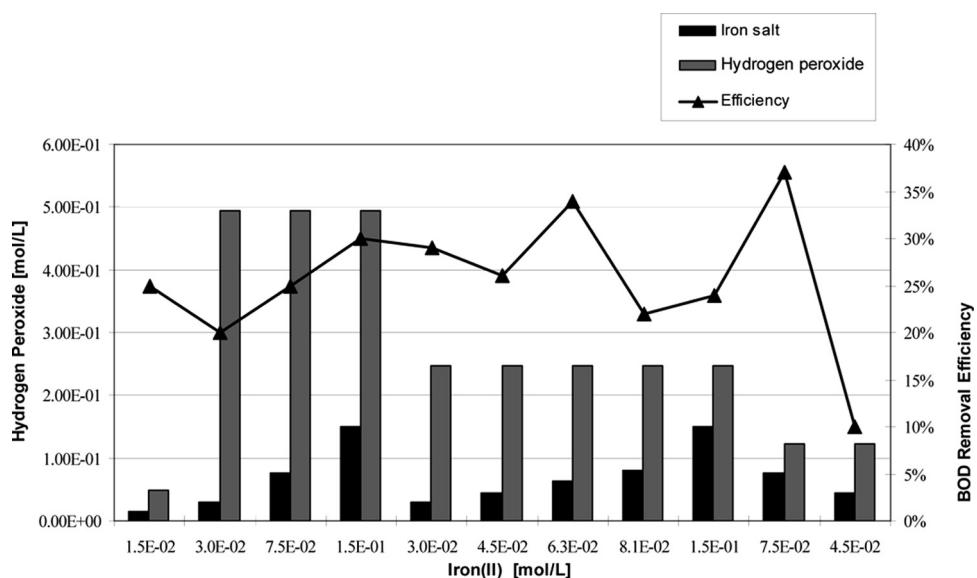


FIG. 1. BOD reduction efficiency of coffee pulping wastewater at different Fe²⁺/H₂O₂ ratio after 2 h of reaction.

Solar Photo-Fenton Coupled to UASB Treatment

Studies using the solar photo-Fenton reaction followed by UASB treatment were also performed, to investigate the possible enhancement of the BOD removal efficiency. Some researchers have been also investigating a combination of POAs with conventional biological treatments as an alternative proposal to enhance the efficiency of the organics removal and lower the budget of the entire process (12,13,32).

For comparison, a small amount of the pulping wastewater (150 mL) was treated with solar photo-Fenton system using the same $\text{Fe}(\text{II})$: H_2O_2 molar ratio of reagents. After 2 h of sunlight irradiation, the pH was adjusted to 8.0 to stop the Fenton reaction. This effluent was centrifuged and the remaining solution was diluted in a 1:100 ratio with distilled water. Samples of this treated solution were withdrawn for the analysis of residual BOD. The results show that the BOD of the effluent using only the solar photo-Fenton process was reduced at 60%, which corresponded to 4380 mg L^{-1} of organic load removal, compared to the initial value (Fig. 2).

Qualitative analysis, using a procedure described by Oliveira et al. (33), when hydrogen peroxide react with VO_3^- ions which produces a red-orange color peroxovanadium cation (VO_3^+), showed that these samples were also H_2O_2 free. The absence of hydrogen peroxide is an important aspect to avoid toxic effects toward microorganisms during UASB treatment. Literature shows that hydrogen peroxide can oxidize and even dissolve sludge particles into soluble organic compounds (34). The diluted and treated effluent from solar photo-Fenton process was then passed through the UASB reactor. It can be observed in Fig. 2 that a coupled system enhanced only 5% more of the BOD removal in comparison with the remaining BOD after the solar photo-Fenton process. Probably this small efficiency of the UASB after solar photo-Fenton treatment, even though AOPs had removed high concentration of the organic load, was due to the formation of some organic intermediates during AOPs that are more bio-resistant

than the initial ones. Although some researchers have observed similar results (12,35), literature shows that for wastewater containing toxic and non-biodegradable compounds, the combination of photo-Fenton and biological oxidation was more effective to remove these compounds (10,11,36,37).

An inverse coupling system was also studied, treating the wastewater first with a UASB reactor and then with solar photo-Fenton (PF) reaction. It is important to mention that the original effluent was first diluted in a 1:100 ratio with distilled water, prior to the UASB treatment. This precaution was taken because the BOD of the initial effluent was too high, in order of $7300 \text{ mg O}_2 \text{ L}^{-1}$, for the microbiological treatment without any dilution. Figure 2 also shows the results of this study. BOD removal of 70% was obtained after UASB treatment. This is an expected BOD percentage removal for a domestic wastewater effluent, using this laboratory prototype UASB treatment (25). The effluent from UASB was then treated with solar photo-Fenton reaction. After the UASB/solar photo-Fenton coupled treatment, the BOD removal reached 95%.

Although the coupling treatment using UASB/solar photo-Fenton systems was performed using the diluted effluent, the final efficiency showed to be much higher than using an inverse treatment system, solar photo-Fenton/UASB treatment. Data from TOC analysis showed similar results. After the solar photo-Fenton treatment, 20% TOC removal was observed, which can indicate that this process may be producing intermediates, which were not identified in this work, instead of degrading all the organics to total mineralization. After UASB treatment, the TOC removal reached only 14%, and this value can be explained considering that the effluent could be composed of biodegradable and non-biodegradable compounds. Therefore the values of BOD have been reduced, while the TOC values still remain high. Values of TOC after UASB/PF coupling treatment showed 80% removal. Similar results were obtained by Nam et al. [13]. The authors suggested that easily biodegradable compounds were removed by biodegradation and photo-Fenton reaction can then target the remaining organics. Since a more detailed monitoring of organics was not studied in the present work, further investigations must be done to try to identify some of these compounds.

An ideal process is the one in which a non-diluted effluent can be efficiently treated in site, in other words, at the coffee farm. Results of the present work show that it was not possible to treat a non-diluted effluent by UASB and therefore further studies need to be performed in order to optimize the process. One alternative is to enhance the period of solar radiation exposure of the photo-Fenton process that probably could increase the organic load removal, consequently decreasing the TOC value. The

FIG. 2. Comparison of BOD reduction efficiency using coupling system with solar photo-Fenton (PF) and UASB treatment. $[\text{Fe}^{2+}] = 1.25 \times 10^{-2} \text{ mol L}^{-1}$, $[\text{H}_2\text{O}_2] = 4.7 \times 10^{-1} \text{ mol L}^{-1}$, solar irradiation (11:00 h – 13:00 h).

decrease in the organic load can probably turn possible the biological treatment without any dilution. Furthermore, not all coffee farms can afford a biological treatment facility at location, since these effluents are being produced in large amounts only once a year during the harvest season.

CONCLUSIONS

It was observed that for the present effluent the optimum concentration of iron (II) and H_2O_2 were $6.3 \times 10^{-2} \text{ mol L}^{-1}$ and $4.7 \times 10^{-1} \text{ mol L}^{-1}$, respectively. Among the two AOPs studied, Fenton and solar photo-Fenton reactions, the latest showed better efficiency to remove BOD of a non-diluted effluent. Solar photo-Fenton alone removed more than 60% of BOD after 2 h of irradiation. In comparison, UASB alone removed almost 70% of the BOD. However, it is important to note that for the UASB treatment, the effluent was diluted in 1:100 ratio with distilled water. Coupling systems using photo-Fenton and UASB treatments showed that the use of the sequence UASB and then solar photo-Fenton reaction resulted in BOD removal of 95%, and the inverse sequence resulted in 70% BOD removal. Probably some intermediates that are more bio-resistant were generated during solar photo-Fenton reaction which makes the coupling treatment more difficult. The sequence UASB/solar photo-Fenton treatment showed the best results to remove BOD and TOC from a coffee pulping wastewater, reaching 95% and 80% removal, respectively. These results are promising for a further step study in pilot scale due to the fact that for the coffee production the farmers would be able to implement the proposed alternative treatment with low budget, since it uses solar radiation. This study will also help the industry to achieve a sustainable coffee production, with the generation of less harmful wastewater.

ACKNOWLEDGEMENTS

The authors would like to thank FAPEMIG and CAPES/CNPq/MEC for financial support, and Dr. Nogueira, R.F.P (Univ. Estadual Paulista – UNESP) for TOC analysis.

REFERENCES

1. Almeida, C.D.G.C.; Silva, I.J.O. (2005) Uso de águas residuárias do beneficiamento do café. In: XV CONIRD, Teresina, PI.
2. Matos, A.T.; Lo Mônaco, P.A. (2003) Tratamento e aproveitamento agrícola de resíduos sólidos e líquidos da lavagem e despolpa dos frutos do cafeiro'. Viçosa-MG: UFV, 68, (Boletim Técnico, 7).
3. Zambrano, F.D.A.; Isaza, H.J.D. (1998) Demanda química de oxígeno e nitrógeno total de los subproductos del proceso tradicional de beneficio húmedo del café. Revista del Centro Nacional de Investigaciones de Café – Cenicafé, Chinchiná, 49 (4): 279.
4. Gonzalez-Rios, O.; Suarez-Quiroz, M.L.; Boulanger, R.; Barel, M.; Guyot, B.; Guiraud, J.P.; Galindo, S.S. (2007) Impact of “ecological” post-harvest processing on the volatile fraction of coffee beans: I. Green coffee. *J. Food Comp. Analys.*, 20: 289.
5. Suarez-Quiroz, M.L.; Gonzalez-Rios, O.; Barel, M.; Guyot, B.; Guiraud, J.P.; Galindo, S.S.; Guiraud, J.P. (2005) Effect of the post-harvest processing procedure on OTA occurrence in artificially contaminated coffee. *Int. J. Food Microbiol.*, 103: 339.
6. Haddis, A.; Devi, R. (2008) Effect of effluent generated from coffee processing plant on the water bodies and human health in its vicinity. *J. Hazard. Mat.*, 152: 259.
7. Satyawali, Y.; Balakrishnan, M. (2008) Wastewater treatment in molasses-based alcohol distilleries for COD and color removal: A review. *J. Environ. Manag.*, 86: 481.
8. Sakar, S.; Yetilmesoy, K.; Kocak, E. (2009) Anaerobic digestion technology in poultry and livestock waste treatment: A literature review. *Waste Manag. Res.*, 27: 3.
9. Demirel, B.; Yenigun, O.; Onay, T.T. (2005) Anaerobic treatment of dairy wastewaters: A review. *Process Biochemistry*, 40: 2583.
10. Martín, M.M.B.; Pérez, J.A.S.; López, J.L.C.; Oller, I.; Rodríguez, S.M. (2009) Degradation of a four-pesticide mixture by combined photo-Fenton and biological oxidation. *Water Res.*, 43: 653.
11. Chen, C.Y.; Wu, P.S.; Chung, Y.C. (2009) Coupled biological and photo-Fenton pretreatment system for the removal of di-(2-ethylhexyl) phthalate (DEHP) from water. *Bioresource Technol.*, 100: 4531.
12. Parra, S. (2000) Photochemical versus coupled photochemical-biological flow system for the treatment of two biorecalcitrant herbicides: Metobromuron and isoproturon. *Applied Catal. B: Environmental*, 27: 153.
13. Nam, K.; Rodriguez, W.; Kukor, J.J. (2001) Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction. *Chemosphere*, 45: 11.
14. Kondo, M.M.; Jardim, W.F. (1991) Photodegradation of chloroform and urea using Ag-loaded titanium dioxide as catalyst. *Wat. Res.*, 25: 823.
15. Santos, V.C.; Kondo, M.M. (2006) Imobilização de TiO_2 em concreto: Fotodegradação de clorofórmio e fenol. *Quim. Nova*, 29: 251.
16. Wardman, P. (1989) Reduction potentials of one-electron couples involving free-radicals in aqueous-solution. *J. Phys. Chem. Ref. Data*, 18 (4): 1637.
17. Nogueira, R.F.P.; Silva, M.R.A.; Trovó, A.G. (2005) Influence of the iron source on the solar photo-Fenton degradation of different classes of organic compounds. *Solar Energy*, 79: 384.
18. Esplugas, S.; Giménez, J.; Contreras, S.; Pascual, E.; Rodríguez, M. (2002) Comparison of different advanced oxidation processes for phenol degradation. *Wat. Res.*, 36: 1034.
19. Andreozzi, R.; Caprio, V.; Insola, A.; Marotta, R. (1999) Advanced oxidation process (AOP) for water purification and recovery. *Catal. Today*, 53 (1): 51.
20. Benitez, F.J.; Beltrán-Heredia, J.; Acero, J.L.; Rubio, F.J. (2000) Contribution of free radicals to chlorophenols decomposition by several advanced oxidation processes. *Chemosphere*, 41: 1271.
21. Pignatello, J.J.; Oliveros, E.; Mackay, A. (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. *Environ. Sci. Technol.*, 36: 1.
22. Sun, Y.; Pignatello, J.J. (1993) Photochemical reactions involved in the total mineralization of 2,4-D by $Fe^{3+}/H_2O_2/UV$. *Environ. Sci. Technol.*, 27: 304.
23. Malato, S.; Blanco, J.; Cáceres, J.; Fernández-Alba, A.R.; Agüera, A.; Rodríguez, A. (2002) Photocatalytic treatment of water-soluble pesticides by photo-Fenton and TiO_2 using solar energy. *Catal. Today*, 76: 209.
24. APHA-WEF-AWWA. (1995) *Standard Methods for the Examination of Water and Wastewater*, 19th Ed.; Baltimore, MD, USA, 2.54, 5.2–5.6.
25. Kondo, M.M.; Rosa, V.A.M. (2007) Protótipo de reator anaeróbio: Tratamento de esgoto doméstico nas escolas. *Quim. Nova Esc.*, 26: 33.

26. Paterlini, W.C.; Nogueira, R.F.P. (2005) Multivariate analysis of photo-Fenton degradation of the herbicides tebuthiuron, diuron and 2,4-D. *Chemosphere*, 58: 1107–1116.

27. Torrades, F.; Perez, M.; Mansilla, H.D.; Pera, J. (2003) Experimental design of Fenton and photo-Fenton reactions for the treatment of cellulose bleaching effluents. *Chemosphere*, 53: 1211–1220.

28. Glaze, W.H.; Kang, J.W.; Chapin, D.H. (1987) The chemistry of water-treatment processes involving ozone, hydrogen-peroxide and ultraviolet-radiation. *Ozone: Sci. Eng.*, 9: 335–352.

29. Villa, R.D.; Silva, M.R.A.; Nogueira, R.F.P. (2007) Potencial de aplicação do processo foto Fenton/solar como pré-tratamento de efluente da indústria de laticínios. *Quim. Nova*, 30: 1799–1803.

30. Tokumura, M.; Znad, H.T.; Kawase, Y. (2008) Decolorization of dark Brown colored coffee effluent by solar photo-Fenton reaction: Effect of solar light dose on decolorization kinetics. *Wat. Res.*, 42: 4665–4673.

31. Bossmann, S.H.; Oliveros, E.; Gob, S.; Siegwart, S.; Dahlen, E.P.; Payawan, L.; Straub, M.; Worner, M.; Braun, A.M. (1998) New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton reactions. *J. Phys. Chem. A*, 102: 5542–5550.

32. Pulgarin, C.; Invernizzi, M.; Parra, S.; Sarria, V.; Polania, R.; Péringer, P. (1999) Strategy for the coupling of photochemical and biological flow reactors useful in mineralization of biorecalcitrant industrial pollutants. *Catalysis Today*, 54: 341–352.

33. Oliveira, M.C.; Nogueira, R.F.P.; Gomes Neto, J.A.; Jardim, W.F.; Rohwedder, J.J.R. (2001) Sistema de injeção em fluxo espectrofotométrico para monitorar peróxido de hidrogênio em processo de fotodegradação por reação foto-Fenton. *Quim. Nova*, 24: 188–190.

34. Kim, T.H.; Lee, S.R.; Nam, Y.K.; Yang, J.; Park, C.; Lee, M. (2009) Disintegration of excess activated sludge by hydrogen peroxide oxidation. *Desalination*, 246: 275–284.

35. Fernandez-Alba, A.R.; Hernando, D.; Aguera, A.; Cáceres, J.; Malato, S. (2002) Toxicity assays: A way for evaluating AOPs efficiency. *Wat. Res.*, 36: 4255–4262.

36. Pariente, M.A.; Martínez, F.; Melero, J.A.; Botas, J.A.; Velegraki, T.; Xekoukoulotakis, N.P.; Mantzavinos, D. (2008) Heterogeneous photo-Fenton oxidation of benzoic acid in water: Effect of operating conditions, reaction by-products and coupling with biological treatment. *Applied Catal. B: Environ.*, 85: 24–32.

37. Garcia-Montaño, J.; Domènec, X.; Garcia-Hortal, J.A.; Torrades, F.; Peral, J. (2008) The testing of several biological and chemical coupled treatment for Cibacron Red FN-R azo dye removal. *J. Hazard. Mat.*, 154: 484–490.